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ABSTRACT
In recent years, the advancement of Artificial Intelligence (AI) and
Advanced Metering Infrastructure (AMI) has led to the develop-
ment of data-driven methods for energy prediction and anomaly
detection. These methods provide automated decision support to
building operators in managing and preventing energy loss. Despite
the advantages of having sophisticated data-driven models, one
major drawback is their lack of transparency, which limits their
widespread use. The paper explores the use of the SHapely Addi-
tive exPlanations (SHAP), an explainable AI algorithm, to enhance
transparency in energy prediction and anomaly detection models.
Energy prediction is treated as a regression task, while anomaly
detection as a binary classification. The study employs LightGBM
models for both anomaly detection and energy prediction, which
are tested on a large dataset containing hourly smart metering data
from over 200 real buildings. The energy prediction model achieves
an 𝑅2 score of 0.975, while the anomaly detection model obtains
an AUC-ROC score of 0.942. These models are augmented with
SHAP value-based visualizations, which provide both local and
global explanations of these models, offering valuable insights into
the factors influencing their predictions. Additionally, the present
study introduces a framework that seamlessly integrates feature
transformations within the model, while SHAP operates on the
interpretable feature space, enhancing the explanations provided
by SHAP values.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
Boosting; Anomaly detection; Supervised learning by regres-
sion.
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1 INTRODUCTION
To meet our sustainability goals, reducing energy consumption in
the building sector is essential. A promising solution is the wide-
spread use of energy metering infrastructure, now adopted globally,
leading to a wealth of building energy data. This data offers op-
portunities for data-driven energy forecasting, enabling effective
energy usage prediction and optimization by building managers [6].
Recognizing the impact of faults is vital, as in commercial buildings,
poorly maintained hardware and operational issues can waste 15
to 30 % of energy consumption [2]. Both anomaly detection and
energy prediction are key for efficient energy management.

When addressing energy prediction and anomaly detection at a
large scale, it is beneficial to leverage complex data-driven models.
However, these models often operate as black-boxes due to the
challenges in interpreting their internal workings. Lack of inter-
pretability hinders building operators’ use of these models. Our goal
is to make black-box models more transparent, helping operators
understand, trust, and derive insights from their predictions.

Recently several explainable AI-based algorithms have been pro-
posed to unbox the black-box models in the smart grid domain
and other energy-related domains [4]. To improve black-box model
interpretability, we leverage the widely used SHapely Additive
exPlanations (SHAP) [3]. We also introduce a framework that seam-
lessly integrates feature transformations within the model. This
enhances the interpretability of SHAP explanations by operating
on the human-interpretable feature space, while the model operates
on the transformed space. We evaluate the proposed method on
a large dataset containing 1,749,494 readings and show that the
proposed method helps enhance model transparency.

2 METHODOLOGY
2.1 Dataset
Building Data Genome 2 (BDG2) is an open-source data set of hourly
energy meter readings from 1,636 buildings. In 2019, ASHRAE
organized the Great Energy Predictor III competition on Kaggle,
using a subset of BDG2 [5]. Later in 2022, the Large-scale Energy
Anomaly Detection (LEAD) competition was hosted on Kaggle
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Figure 1: Black-box model in detail

Table 1: Interpretable features extracted from the dataset.

Type Features
Temporal hour, weekday, month, is holiday
Weather air temperature, cloud coverage, dew temperature,

precip depth 1 hr, sea level pressure, wind direction,
wind speed

Meta building id, site id, square feet, year built, floorcount

with the aim of detecting abnormal energy consumption and open-
sourced annotated meter readings from 400 buildings [1]. Winning
solutions in both competitions employed LightGBM and advanced
feature engineering. We utilize a subset of the BDG2 and LEAD
datasets, which includes hourly meter readings over 12 months
from 200 buildings with point-wise anomaly labels.

2.2 Data Pre-processing
For the energy prediction task, we start with the features shown in
Table 1. For the anomaly detection task, we create a new dataset
by including meter readings (omitted in the prediction task) and
incorporate value-change features, inspired by the winning solution
in the LEAD competition. Value-change in meter readings, which
computes the value change in the form of difference and ratio, are
created. Different shift steps are considered to capture changes over
various time ranges. The datasets are then split into train-test based
on the months, The first 8 months of data is considered as training
and the rest is considered as test.

Anomalies comprise less than 3% of the training data, indicating
a notable class imbalance. To balance this, we downsampled the
normal data by randomly selecting an equal number of normal and
anomaly points for anomaly detection training. No downsampling
was done for energy prediction.

2.3 Explaining Black-box Models with SHAP
LightGBM is a popular open-source model known for its efficient
gradient-boosting tree algorithm. It’s versatile, and suitable for
tasks like classification and regression on large datasets, making
it a preferred choice in both competitions. The model’s accuracy
can be attributed to its ensemble of decision trees. However, as
the number of trees increases, it becomes difficult to understand
how the model combines these trees to make individual predictions,
essentially rendering it a black-box.

To understand how LightGBM arrives at individual predictions,
we use SHAP values, derived from game theory’s Shapley values.
These values fairly allocate contributions of individual features to a
model’s prediction. For a given instance 𝑥 , the additivity property

of SHAP represents the prediction 𝑓 (𝑥) as the following.

𝑓 (𝑥) = 𝐸 [𝑓 (𝑥)] +
𝑛∑︁
𝑖=1

𝜙𝑖 (1)

Where 𝜙𝑖 denotes the feature contribution of the 𝑖𝑡ℎ feature
which is also called its SHAP value.

2.4 Input Feature Transformation and
Interpretability

2.4.1 Interpretable Feature Space. Interpretable feature space refers
to a representation of the data where the features have a clear
meaning. It means that the features in the dataset are designed or
selected in a way that can be easily interpreted and understood by
humans.

2.4.2 Model Feature Space. In the model feature space, the features
are engineered and transformed to optimize the performance of
the model. This may involve creating new features from existing
ones and applying mathematical transformations, such as standard
scaling. For example, during the competitions, it was observed that
extracting cyclic coordinates for temporal features proved to be
beneficial. For instance, certain features like the weekday exhibit
periodicity. Equation 2 shows how to extract cyclic coordinate
features, from the original feature where n is the number of unique
values the feature takes.

𝑓 𝑒𝑎𝑡𝑥 (𝑖), 𝑓 𝑒𝑎𝑡𝑦 (𝑖) = 𝑐𝑜𝑠 (2𝜋𝑖/𝑛), 𝑠𝑖𝑛(2𝜋𝑖/𝑛) (2)

The model feature space obtained after feature engineering and
scaling is less human-interpretable. The SHAP framework offers
to explain a black-box model by quantifying the impact of individ-
ual features on the model’s prediction. To enhance interpretability,
it is crucial to apply the SHAP framework specifically to the in-
terpretable feature space. In order to restrict SHAP analysis to
only the interpretable space, the transformation from the inter-
pretable space to the model space is done within the model. Let
𝑓𝑏 be the choice of the base black-box model, which operates on
the transformed space. 𝑥 is the instance in the interpretable space.
The model 𝑓 = 𝑓𝑏 (𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(𝑥)) along with the data in the in-
terpretable space is provided to the SHAP framework to generate
explanations. Refer to Figure 1 for an illustration.

3 EXPERIMENTS AND RESULTS
3.1 Black-Box Model Evaluation
We present the evaluation of our black-boxmodels, comparing them
with baseline interpretable models. Linear models such as Linear/L-
ogistic regression are widely utilized for various prediction/binary
classification tasks in diverse fields owing to their interpretability
and transparency. For the energy prediction model, the metrics
selected to evaluate its performance are R-squared (𝑅2) and Mean
Absolute Error (MAE). For the energy anomaly classifier model, the
metric chosen to evaluate its performance is the Area Under the
Receiver Operating Characteristic curve (AUC-ROC). Our experi-
ments highlight the superior performance of the black-box models
compared to the interpretable baseline models in both energy pre-
diction and anomaly detection tasks. These results are summarized
in Table 2.
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Table 2: Performance comparison of models

Algorithm Energy prediction Anomaly detection
𝑅2 MAE AUC-ROC

LightGBM 0.975 28.201 0.942
Linear Model 0.307 144.991 0.628

Figure 2: Bar plot for global feature importance

3.2 SHAP Explanations
A LightGBM regression model is trained to predict energy consump-
tion. To gain a global understanding of the model, we select a large
data sample and construct a matrix of SHAP values. Each column
represents SHAP feature values, and each row corresponds to a
specific data point. By examining the mean absolute SHAP values
across all data points, we can identify which features significantly
impact the model’s predictions. Figure 2 presents the global feature
importance. It shows the overall influence of a particular feature
on the model in order to make predictions. Among the features,
square_feet, building_id, and hour emerge as the most influential
for the model.

In order to explain the behaviour of this model for a particular
instance, the SHAP values are calculated and presented in the form
of a waterfall plot. It illustrates the contribution of each feature
to the prediction output of the model. Figure 3 depicts a waterfall
plot for an arbitrary instance. The base prediction value (𝐸 [𝑓 (𝑥)])
for the model is 140.4. We observe that the size of the building has
a significantly larger positive impact on the prediction. Addition-
ally, other factors such as the time of the day and weekday also
contribute positively to driving the prediction higher.

Interesting SHAP value patterns emerge with varying feature
values and can be analyzed using a scatter plot, where each point
represents an instance, plotted with feature value on the x-axis and
SHAP value on the y-axis. Figure 4 displays this for the feature
square_feet. As its value rises, its positive contribution to the pre-
diction grows, suggesting larger building areas in the dataset may
push predictions higher.

To enhance the informative nature of the scatterplot, one option
is to assign colours to each point based on the values of another
feature at those specific points. This is particularly useful when
considering the varying effects of a specific value of a feature,
such as a weekday, on different building sizes. Figure 5 shows
the dependency plot for feature weekday. The dependency plot
for weekday reveals that the weekends (5 and 6) have a negative

100 200 300 400 500
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0 = is_holiday

20 = air_temperature

76 = year_built
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Figure 3: Waterfall plot for a specific model prediction

Figure 4: Scatter plot for the feature square_feat

Figure 5: Dependency plot for the feature weekday

impact on building energy use while working days have a positive
impact on energy use. A similar trend is observed for the feature
hour indicating that during non-working hours, there are instances
where the hour has a negative impact on the meter reading. Upon
examining the corresponding values of the feature square_feet, it
becomes apparent that the impact is more pronounced in buildings
with larger sizes.

A LightGBM binary classifier is trained for anomaly detection.
The model provides a probability score indicating the likelihood
of an instance being anomalous. Figure 6 shows the global feature
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Figure 6: Global feature importance for anomaly detection

Figure 7: Waterfall plot for a specific anomaly model prediction

Figure 8: Scatter plot for the feature meter_reading

importance for explaining the energy prediction model. Among
the features, meter reading, building_id, and lag values emerge as
the most influential for the model. Figure 7 illustrates a waterfall
plot for an arbitrary instance. The base prediction value is 0.49. We
notice that when the meter reading value of 1, it strongly influ-
ences the prediction positively. Additionally, other crucial factors
contributing to this result are the changes in reading value.

Figure 8 shows the scatter plot for the feature meter_reading.
The model considers lower values of meter readings as contributing
positively toward the anomaly. Figure 9 shows the scatter plot for
the change in value in meter reading (𝑋 (𝑡) − 𝑋 (𝑡 − 𝑠)), where s is

Figure 9: Scatter plot for the feature lag_value_-168

-168 hours (current - one week from now). The larger the change,
the more positive impact it has on being an anomaly.

4 DISCUSSION AND CONCLUSION
Our study showcased the effectiveness of LightGBM models in pre-
dicting energy consumption and detecting anomalies within the
extensive set of 200 buildings from the BDG2 dataset. Our experi-
ments highlight the superior performance of the black-box models
over baseline models for energy prediction (R-squared of 0.975 vs
0.307) and anomaly detection (AUC-ROC of 0.942 vs 0.628). How-
ever, a major hurdle in implementing LightGBM models lies in
their limited interpretability. To address this, we utilized SHAP.
By incorporating feature transformations and engineering directly
within the model, the SHAP plots offer insights into the influence
of human-interpretable features in their original scale. Key findings
highlighted the positive impact of high human activity (working
hours) on energy predictions and the significance of building size.
For anomaly detection, meter readings and periodic fluctuations
emerged as key indicators. In conclusion, the visualization capa-
bility offered by SHAP can instil confidence in building operators
by providing them with a clear understanding of the model’s inner
workings.
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